A sample text widget

Etiam pulvinar consectetur dolor sed malesuada. Ut convallis euismod dolor nec pretium. Nunc ut tristique massa.

Nam sodales mi vitae dolor ullamcorper et vulputate enim accumsan. Morbi orci magna, tincidunt vitae molestie nec, molestie at mi. Nulla nulla lorem, suscipit in posuere in, interdum non magna.

Ray Kurzweil – 2

example of many of being able to actually add new genes. So we’ll be able to subtract genes, over-express certain genes, under-express genes, and add new genes.

Another methodology is cell transdifferentiation, a broader concept then just stem cells.

One of the problems with stem cell research or stem cell approaches is this. If I want to grow a new heart, or maybe add new heart cells, because my heart has been damaged, or if I need new pancreatic Islet cells because my pancreatic Islet cells are destroyed, or need some other type of cells, I’d like it to have my DNA. The ultimate stem cell promise, the holy grail of these cell therapies, is to take my own skin cells and reprogram them to be a different kind of cell. How do you do that? Actually, all cells have the same DNA. What’s the difference between a heart cell and pancreatic Islet cell?

Well, there are certain proteins, short RNA fragments, and peptides that control gene expression. They tell the heart cells that only the certain genes which should be expressed in a heart cell are expressed. And we’re learning how to manipulate which genes are expressed. By adding certain proteins to the cell we can reprogram a skin cell to be a heart cell or a pancreatic Islet cell. This has been demonstrated in just the last couple years. So then we can create in a Petri dish as many heart cells or pancreatic Islet cells as I need, with my own DNA, because they’re derived from my cells. Then inject them, and they’ll work their way into the right tissues. In the process we can discard cells that have DNA errors, so we can basically replenish our cells with DNA-corrected cells.

While we are at it, we can also extend the telomeres. That’s another aging process. As the cells replicate, these little repeating codes of DNA called telomeres grow shorter. They’re like little beads at the end of the DNA strands. One falls off every time the cell replicates, and there’s only about fifty of them. So after a certain number of replications the cell can’t replicate anymore. There is actually one enzyme that controls this—telomerase, which is capable of extending the telomeres. Cancer actually works by creating telomerase to enable them to replicate without end. Cancer cells become immortal because they can create telomerase.

As we’re rejuvenating our cells, turning a skin cell into a kind of cell that I need, making sure that it has it’s DNA corrected, we can also extend it’s telomeres by using telomerase in the Petri dish. Then you got this new cell that’s just like my heart cells were when I was twenty. Now you can replicate that, and then inject it, and really rejuvenate all of the body’s tissues with young versions of my cells. So that’s cell rejuvenation. That’s one idea, or one technique, and there’s many different variations of that.

Then there’s turning on and off enzymes. Enzymes are the work horses of biology. Genes express themselves as enzymes, and the enzymes actually go and do the work. And we can add enzymes. We can turn enzymes off. One example of that is Torcetrapib, which destroys one enzyme, and that enzyme destroys HDL, the good cholesterol in the blood. So when people take Torcetrapib their HDL, good cholesterol levels, soar, and atherosclerosis dramatically slows down or stops. The phase 2 trials were very encouraging, and Pfizer is spending a record one billion dollars on the phase 3 trials. That’s just one example of many of these paradigm: manipulating enzymes. So there’s many different ideas to get in and very precisely reprogram the information processes that underlie biology, to undercut disease processes and aging processes, and move them towards healthy rejuvenated processes.

David: How do you see robotics, artificial intelligence, and nanotechnology effecting human health and life span in the future?
Ray: I mentioned that we talk about three bridges to radical life extension in Fantastic Voyage. Bridge One is aggressively applying today’s knowledge, and that’s, of course, a moving frontier, as we learn and gain more and more knowledge. In Chapter 10 of Fantastic Voyage I talk about my program, and at the end I mention that one part of my program is what I call a positive health slope, which means that my program is not fixed.

I spend a certain amount of time every week studying a number of things–new research, new drug developments that are coming out, new information about myself that may come from testing. Just reading the literature I might discover something that’s in fact old knowledge, but there’s so much information out there, I haven’t read everything. So I’m constantly learning more about health and medicine and my own body and modifying my own program. I probably make some small change every week. That doesn’t mean my program is unstable. My program is quite stable, but I’m fine-tuning at the edges quite frequently.

Bridge Two we’ve just been talking about, which is the biotechnology revolution. A very important insight that really changes one’s perspective is to understand that progress is exponential and not linear. So many sophisticated scientists fail to take this into consideration. They just assume that the progress is going to continue at the current pace, and they make this mistake over and over again. If you consider the exponential pace of this process, ten or fifteen years from now we will have really dramatic tools in the forms of medications and cell therapies that can reprogram our health, within the domain of biology.

Bridge Three is nanotechnology. The golden era will be in about twenty years from now. They’ll be some applications earlier, but the real Holy Grail of nanotechnology are nanobots, blood cell-size devices that can go inside the body and keep us healthy from inside. If that sounds very futuristic, I’d actually point out that we’re doing sophisticated tasks already with blood cell-size devices in animal experiments.

One scientist cured Type 1 diabetes in rats with a nano-engineered capsule that has seven nanometers pores. It lets insulin out in a controlled fashion and blocks antibodies. And that’s what is feasible today. MIT has a project of a nano-engineered device that’s actually smaller than a cell and it’s capable of detecting specifically the antigens that exist only on certain types of cancer cells. When it detects these antigens it latches onto the cell, and burrows inside the cell. It can detect once it’s inside and then at that point it releases a toxin which destroys the cancer cell. This has actually worked in the Petri dish, but that’s quite significant because there’s actually not that much that could be different in vivo as in vitro.

This is a rather sophisticated device because it’s going through these several different stages, and it can do all of these different steps. It’s a nano-engineered device in that it is created at the molecular level. So that’s what is feasible already. If you consider what I call the Law of Accelerating Returns, which is a doubling of the power of these information technologies every year, within twenty-five years these computation-communication technologies, and our understanding of biology, will be a billion times more advanced than it is today. We’re shrinking technology, according to our models, at a rate of over a hundred per 3-D volume per decade.

So these technologies will be a hundred thousand times smaller than they are today in twenty-five years, and a billion times more powerful. And look at what we can already do today experimentally. Twenty-five years from now these nanobots will be quite sophisticated. They’ll have computers in them. They’ll have communication devices. They’ll have small mechanical systems. They’ll really be little robots, and they be able to go inside the body and keep us healthy from inside. They will be able to augment the immune system by destroying pathogens. They will repair DNA errors, remove debris and reverse atherosclerosis. Whatever we don’t get around to finishing with biotechnology, we’ll be able to finish the job with these nano-engineered blood-cell sized robots or nanobots.

This really will provide radical life extension. The basic metaphor or analogy to keep in mind is to ask the question, How long does a house last? Aubrey de Grey uses this metaphor. The answer is, a house lasts as long as you want it to. If you don’t take care of it the house won’t last that long. It will fall apart. The roof will spring a leak and the house will quickly decay. On the other hand, if you’re diligent, and something goes wrong in the house you fix it. Periodically you upgrade the technology. You put in a new HVAC system and so forth. With this approach, the house will go on indefinitely, and we do have houses, in fact, that are thousands of years of old. So why doesn’t this apply to the human body?

The answer is that we understand how a house works. We understand how to fix a house. We understand all the problems a house can have, because we’ve designed them. We don’t yet have that knowledge and those tools today to do a comparable job with our body. We don’t understand all the things that could wrong, and we don’t have all the fixes for everything. But we will have this knowledge and these tools. We will have complete models of biology. We’ll reverse-engineered biology within twenty years, and we’ll have the means to go in and repair all of the problems we have identified.

We’ll be able to indefinitely fix the things that go wrong. We’ll have nanobots that can go in and proactively keep us healthy at a cellular level, without waiting until major diseases flare up, as well as stop and reverse aging processes.

Pages: 1 2 3 4 5

Leave a Reply